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Mitomycin C (1) is extensively used in combination
therapy to treat various neoplasms.! Its associated
toxicities have led to an active drug development
program? and the subsequent discovery of the two C(7)
aminoethylene disulfides BMS-1811742 (2) and KW-
21494 (3). Both 252b and 3% exhibit improved pharma-
cological activity, compared with 1, and 3 is currently
undergoing clinical trials.>
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Compounds 2 and 3 only differ from mitomycin C (1)
in the C(7) substituent. In 2 and 3, a substituted
aminoethylene disulfide unit replaces the C(7) amino
group found in 1. Novel mechanisms®~2 proposed for 2
and 3 differ from the bioreductive activation pathway
commonly accepted for mitomycin C.° A major conten-
tion of these hypotheses is that the C(7) aminoethylene
disulfide unit in 2 and 3 undergoes thiol-mediated (e.g.,
R'SH = cysteine, glutathione (GSH)) disulfide exchange
to give 4 and R'SSR.%7 Thiol 4 has never been identified.
We present here preparative routes to 4 and related
compounds and report on the reactivity of these species.
The properties observed for thiol 4 require us to question
these hypotheses®’ for 2 and 3, and they lead us to
suggest another pathway.

Our approach to 4 was to prepare mitomycins that
rapidly and efficiently convert to 4 under mild condi-
tions. Two strategies were used. The first entailed
synthesizing C(7)-substituted mitomycins that undergo
selective disulfide cleavage. We prepared 510211 and 6.100
Each contained a pyridyl disulfide group, which upon
treatment with either p,L-dithiothreitol2 (DTT) or N,N'-
dimethyl-N,N'-bis(mercaptoacetyl)hydrazine®* (DMH)
underwent selective disulfide cleavage to give 7 and 8,
respectively. Subsequent intramolecular disulfide cleav-
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age provided 4 and the oxidized cyclic disulfide. We
expanded our study to include the two porfiromycin (R’
= CHp3) analogues 9 and 10. In the second approach,
we incorporated a C(7) terminal thiol ester unit to give
11.14 This route takes advantage of the relative ease
with which thiol esters undergo base-mediated cleav-
age!® and yielded the porfiromycin thiol 12.
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Thiol formation was monitored by HPLC (200—400
nm, photodiode array detection).’® In Figure 1A we
provide the HPLC profile (365 nm) obtained from a
deaerated (Ar) methanolic (—78 °C) solution containing
6 and DTT (10 equiv). We observed the complete
consumption of 6 (32.1 min) and the appearance of
multiple peaks (3—4) between 22 and 26 min.'” The
same peaks were observed when we used DMH in place
of DTT, acetone for methanol, and 5 in place of 6. Figure
1B provides the corresponding HPLC chromatogram for
a deaerated (Ar) methanolic NaOMe solution (—78 °C)
containing 11. Significantly, multiple peaks were ob-
served between 23 and 29 min. The same peaks were
observed for DTT-treated methanolic solutions contain-
ing either 9 or 10.17 We attributed the increased
retention times for the porfiromycin multiple peaks,
compared with the corresponding mitomycin peaks, to
the effect of the N(1a) methyl group on the elution
times.18 These experiments indicated that a comparable
set of intermediates is observed in the HPLC chromato-
grams independent of the activation procedure (DTT
(DMH), NaOMe), the solvent used (methanol, acetone),
and the structure of the starting mitomycins (5, 6,
9-11).

Information concerning the identity of the multiple
HPLC peaks was gathered through thiol trapping-
experiments (4,4'-dipyridyl disulfide (DPDS), 2,2'-
dithiobis(5-nitropyridine) (DTNP), N-ethylmaleimide
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Figure 1. HPLC (365 nm) of mitomycin 6 and porfiromycin
11 activated reactions. (A) Mitomycin 6 treated with DTT (10
equiv) in MeOH at —78 °C. Major peaks (min): tg 8.3, 5-nitro-
2-thiopyridone; 21.9, 23.0, 23.6, 4; 26.6, 7; 28.4, 2:1 6:DTT
adduct; 28.8, 15. (B) Porfiromycin 11 treated with NaOMe in
MeOH at —78 °C. Major peaks (min): tg 23.9, 25.9, 26.6, 29.1,
12; 31.2, 14. (C) Mitomycin 6 sequentially treated with DTT
(10 equiv) in MeOH at —78 °C (Figure 1A) followed by DPDS.
Major peaks (min): tr 3.8, 4-thiopyridone; 8.3, 5-nitro-2-
thiopyridone; 28.5, 5. (D) Porfiromycin 11 sequentially treated
with NaOMe in MeOH at —78 °C (Figure 1C) followed by
DTNP. Major peaks (min): tg 12.3, 5-nitro-2-thiopyridone
byproduct(s); 31.2, 14; 33.6, 10. The identities of 5 and 10 in
Figure 1C,D, respectively, were confirmed by co-injection
(cospot) of an authentic sample with the reaction solution in
the HPLC (TLC).

(NEM)). Figure 1C shows that adding DPDS to a DTT-
treated solution of 6 (Figure 1A) completely eliminated
the multiple HPLC peaks and the production of 5 (28.5
min). Correspondingly, treating the methanolic NaOMe
solution-containing 11 (Figure 1B) with DTNP gave 10
(33.6 min) as the major product (Figure 1D). Similarly,
we found that 5 was converted to 6, 9 to 10, and 10 to
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9 upon successive treatment with DTT and the ap-
propriate disulfide (DPDS, DTNP) and that 11 was
converted to 9 upon sequential treatment with metha-
nolic NaOMe and DPDS. Replacing disulfides DPDS
and DTNP with NEM in the thiol-trapping reactions
beginning with either 5 or 6 gave diastereomeric 13.
These collective experiments demonstrated that the
multiple HPLC peaks are likely to be free thiol 4 (12)
and isomeric forms of 4 (12).1°

Additional experiments supported this notion. Elevat-
ing the reaction temperature of a deaerated methanolic
NaOMe solution of 11 from —78 °C to room temperature
led to near quantitative production of disulfide 14.20a
Correspondingly, treatment of deaerated methanolic
(“pH” 5.5, 6.5, 7.4) solutions containing either 5 or 6 at
room temperature with DTT (1 equiv) gave disulfide
1520ab g5 the major product. Absent in these reactions
was the production of noticeable amounts of aziridine
ring-opened mitosenes (HPLC analysis).
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From where did the multiple peaks in the HPLC
chromatograms (Figures 1A,B) come? Without NMR
structural evidence we attributed the multiple peaks,
in part, to 4 (12) and isomeric forms of the free thiol 4
(12), which can include C(6)-16,% C(7)-17, and C(8)-187
cyclized adducts.
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A significant finding of this study was the observation
of multiple peaks in the HPLC chromatograms corre-
sponding to thiol 4 (12). Furthermore, we found that 4
(12) generation did not lead to aziridine ring-opened
mitosenes. This finding was surprising since it has been
proposed that the terminal thiol unit in 4 (12) initiates
conversion of the mitomycin ring system to an activated
mitosene and subsequent nucleophilic (DNA) attack at
the C(1) and C(10) sites.®’ Last, we found that 4 and
12 were efficiently converted to dimeric mitomycins 15
and 14, respectively, at room temperature. The ef-
ficiency of 14 and 15 production may be clinically
significant. Compound 15 is the major metabolite
produced upon administration of 3 to normal and tumor-
bearing mice.2! Several mechanisms exist for the ana-
erobic dimerization of 4 to either the bis-semiquinone
or mixed hydroquinone—quinone species corresponding
to 15. Formation of reduced 15 from either 2 or 3 leads
to a novel DNA cross-linking agent in which DNA
modification of complementary strands can initially
proceed at the C(1) aziridine sites on the two mitomycin
subunits. By comparison, mitomycin C cross-linking
transformations require activation of the C(1) aziridine
site and the C(10) position. Chemical studies have
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documented the diminished reactivity of the C(10) site
in reductively activated 1 versus the C(1) position.2?
Accordingly, activated dimeric mitomycins, such as
reduced 15 (14), may permit DNA cross-linking reac-
tions to proceed more efficiently than conventional
monomeric mitomycins. Studies on the mechanistic
details of this projected pathway and the sequence
selectivity and structure of dimeric mitomycin—DNA
adduct(s) are in progress.
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